New point compression method for elliptic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math>-curves of j-invariant 0

نویسندگان

چکیده

In the article we propose a new compression method (to 2⌈log2⁡(q)⌉+3 bits) for Fq2-points of an elliptic curve Eb:y2=x3+b (for b∈Fq2⁎) j-invariant 0. It is based on Fq-rationality some generalized Kummer surface GKb. This geometric quotient Weil restriction Rb:=RFq2/Fq(Eb) under order 3 automorphism restricted from Eb. More precisely, apply theory conic bundles (i.e., conics over function field Fq(t)) to obtain explicit and quite simple formulas birational Fq-isomorphism between GKb A2. Our point consists in computation these formulas. To recover (in decompression stage) original Eb(Fq2)=Rb(Fq) find inverse image natural map Rb→GKb degree 3, i.e., extract cubic root Fq. For q≢1(mod27) this just single exponentiation Fq, hence seems be much faster than classical one with x-coordinate, which requires two exponentiations

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A point compression method for elliptic curves

Here we describe new tools to be used in fields of the form Gf(2), that help describe properties of elliptic curves defined overGF (2). Further, utilizing these tools we describe a new elliptic curve point compression method, which provides the most efficient use of bandwidth whenever the elliptic curve is defined by y + xy = x + a2x 2 + a6 and the trace of a2 is zero.

متن کامل

Implementing the 4-dimensional GLV method on GLS elliptic curves with j-invariant 0

The Gallant-Lambert-Vanstone (GLV) method is a very efcient technique for accelerating point multiplication on elliptic curves with e ciently computable endomorphisms. Galbraith, Lin and Scott (J. Cryptol. 24(3), 446-469 (2010)) showed that point multiplication exploiting the 2-dimensional GLV method on a large class of curves over Fp2 was faster than the standard method on general elliptic cur...

متن کامل

Implementing 4-Dimensional GLV Method on GLS Elliptic Curves with j-Invariant 0

The Gallant-Lambert-Vanstone (GLV) method is a very efcient technique for accelerating point multiplication on elliptic curves with e ciently computable endomorphisms. Galbraith, Lin and Scott (J. Cryptol. 24(3), 446-469 (2011)) showed that point multiplication exploiting the 2-dimensional GLV method on a large class of curves over Fp2 was faster than the standard method on general elliptic cur...

متن کامل

Point compression for Koblitz elliptic curves

Elliptic curves over finite fields have applications in public key cryptography. A Koblitz curve is an elliptic curve E over F2; the group E(F2n ) has convenient features for efficient implementation of elliptic curve cryptography. Wiener and Zuccherato and Gallant, Lambert and Vanstone showed that one can accelerate the Pollard rho algorithm for the discrete logarithm problem on Koblitz curves...

متن کامل

COUNTING TROPICAL ELLIPTIC PLANE CURVES WITH FIXED j-INVARIANT

In complex algebraic geometry, the problem of enumerating plane elliptic curves of given degree with fixed complex structure has been solved by R.Pandharipande [8] using Gromov-Witten theory. In this article we treat the tropical analogue of this problem, the determination of the number Etrop(d) of tropical elliptic plane curves of degree d and fixed “tropical j-invariant” interpolating an appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2021

ISSN: ['1090-2465', '1071-5797']

DOI: https://doi.org/10.1016/j.ffa.2020.101774